Ex. Two-Ray Model

Delay spread $=\frac{r_{2}}{c}-\frac{r_{1}}{c}$

$$
\begin{aligned}
y(t) & =\frac{\alpha}{r_{1}} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{r_{1}}{c}\right)\right)-\frac{\alpha}{r_{2}} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{r_{2}}{c}\right)\right) \\
\frac{P_{y}}{P_{x}} & =\left|\frac{\alpha}{r_{1}} e^{-j 2 \pi f_{c} \frac{r_{1}}{c}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} \frac{r_{2}}{c}}\right|^{2}=\left|\frac{\alpha}{r_{1}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} \frac{r_{2}-r_{1}}{c}}\right|^{2}
\end{aligned}
$$

[^0]
Ex. Two-Ray Model

Ex. Two-Ray Model

Ex. Two-Ray Model

Ex. Two-Ray Model (Approximation)

$$
\begin{aligned}
\frac{P_{y}}{P_{x}} & \approx\left|\frac{\alpha}{r_{1}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi \frac{2 h_{t} h_{r}}{\lambda}}\right|^{2} \approx \frac{\alpha}{d}\left|1-e^{-j 2 \pi \frac{2 h_{t} h_{r}}{\lambda d}}\right|^{2} \\
& \approx\left(\frac{\alpha}{d}\right)^{2}\left|1-\left(1-j 2 \pi \frac{2 h_{t} h_{r}}{\lambda d}\right)\right|^{2}=\frac{\alpha^{2}}{d^{2}}\left|j 2 \pi \frac{2 h_{t} h_{r}}{\lambda d}\right|^{2}=\left(\frac{4 \pi \alpha h_{t} h_{r}}{\lambda d^{2}}\right)^{2} d>h_{t}, h_{r} \\
& =\left(\frac{\sqrt{G_{T x} G_{R x}} h_{t} h_{r}}{d^{2}}\right)^{2} \propto \frac{1}{d^{4}}
\end{aligned}
$$

Ex. Two-Ray Model

Ex. Two-Ray Model

dBm

- The range of RF power that must be measured in cellular phones and wireless data transmission equipment varies from
- hundreds of watts in base station transmitters to
- picowatts in receivers.
- For calculations to be made, all powers must be expressed in the same power units, which is usually milliwatts.
- A transmitter power of 100 W is therefore expressed as $100,000 \mathrm{~mW}$. A received power level of 1 pW is therefore expressed as 0.000000001 mW .
- Making power calculations using decimal arithmetic is therefore complicated.
- To solve this problem, the dBm system is used.

Range of RF Power in Watts and dBm

dB and dBm

- The decibel scale expresses factors or ratios logarithmically.
- Unitless dB value
- Represent power ratio: $10 \log _{10} \frac{P_{2}}{P_{1}}$
- dB value with a unit
- Represent the signal power itself:

$$
P[\mathrm{dBW}]=10 \log _{10} \frac{P}{1 \mathrm{~W}}, \quad P[\mathrm{dBm}]=10 \log _{10} \frac{P}{1 \mathrm{~mW}}
$$

- Note that $P[\mathrm{dBm}]=P[\mathrm{dBW}]+30$

Remark

- Adding dB values corresponds to multiplying the underlying factors, which means multiplying the units if they are present.
- It is therefore appropriate to add unitless dB values to a dB value with a unit (such as dBm)
- The result is still referred to that unit.
- Ex: $17 \mathrm{dBm}+13 \mathrm{~dB}-6 \mathrm{~dB}=24 \mathrm{dBm}$
- Correspond to $50 \mathrm{~mW} \times 20 / 4=250 \mathrm{~mW}$.

Doppler Shift: 1D Move

- At the transmitter, suppose we have

$$
\sqrt{2 P_{t}} \cos \left(2 \pi f_{c} t+\phi\right)
$$

- At distance r (far enough), we have Time to travel a distance of r

$$
\frac{\alpha}{r} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{r}{c}\right)+\phi\right)
$$

- If moving, r becomes $r(t)$.
- If moving away at a constant velocity v, then $r(t)=r_{0}+v t$.

$$
\begin{gathered}
\frac{\alpha}{r(t)} \cos \left(2 \pi f_{c}\left(t-\frac{r_{0}+v t}{c}\right)+\phi\right)=\frac{\alpha}{r(t)} \cos \left(2 \pi\left(f_{c}-f_{c} \frac{v}{c}\right) t-2 \pi f_{c} \frac{r_{0}}{c}+\phi\right) \\
\text { Frequency shift } \\
\Delta f=\frac{v}{\lambda}
\end{gathered}
$$

Review: Instantaneous Frequency

For a generalized sinusoid signal

$$
A \cos (\theta(t))
$$

the instantaneous frequency at time t is given by

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)
$$

When $\theta(t)=2 \pi f_{c}\left(t-\frac{r(t)}{c}\right)+\phi$,

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)=f_{c}-\frac{f_{c}}{c} \frac{d}{d t} r(t)=f_{c}-\frac{1}{\lambda} \frac{d}{d t} r(t)
$$

Frequency shift

Big Picture

Transmission impairments in cellular systems

Physics of radio propagation

Extraneous signals

Transmitting and receiving equipment

Attenuation (Path Loss)
Shadowing
Doppler shift
Inter-symbol interference (ISI)
Flat fading
Frequency-selective fading
Co-channel interference
Adjacent channel interference
Impulse noise
White noise
White noise
Nonlinear distortion
Frequency and phase offset
Timing errors

[^0]: Floor (Ground)

